Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism.

نویسندگان

  • Christopher D Morrison
  • Xiaochun Xi
  • Christy L White
  • Jianping Ye
  • Roy J Martin
چکیده

Metabolic fuels act on hypothalamic neurons to regulate feeding behavior and energy homeostasis, but the signaling mechanisms mediating these effects are not fully clear. Rats placed on a low-protein diet (10% of calories) exhibited increased food intake (P < 0.05) and hypothalamic Agouti-related protein (Agrp) gene expression (P = 0.002). Direct intracerebroventricular injection of either an amino acid mixture (RPMI 1640) or leucine alone (1 mug) suppressed 24-h food intake (P < 0.05), indicating that increasing amino acid concentrations within the brain is sufficient to suppress food intake. To define a cellular mechanism for these direct effects, GT1-7 hypothalamic cells were exposed to low amino acids for 16 h. Decreasing amino acid availability increased Agrp mRNA levels in GT1-7 cells (P < 0.01), and this effect was attenuated by replacement of the amino acid leucine (P < 0.05). Acute exposure to elevated amino acid concentrations increased ribosomal protein S6 kinase phosphorylation via a rapamycin-sensitive mechanism, suggesting that amino acids directly stimulated mammalian target of rapamycin (mTOR) signaling. To test whether mTOR signaling contributes to amino acid inhibition of Agrp gene expression, GT1-7 cells cultured in either low or high amino acids for 16 h and were also treated with rapamcyin (50 nM). Rapamycin treatment increased Agrp mRNA levels in cells exposed to high amino acids (P = 0.01). Taken together, these observations indicate that amino acids can act within the brain to inhibit food intake and that a direct, mTOR-dependent inhibition of Agrp gene expression may contribute to this effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling.

Linear growth in children is sensitive to nutritional status. Amino acids, in particular leucine, have been shown to regulate cell growth, proliferation, and differentiation through the mammalian target of rapamycin (mTOR), a nutrient-sensing protein kinase. Having recently demonstrated a role for mTOR in chondrogenesis, we hypothesized that leucine restriction, acting through mTOR, would inhib...

متن کامل

اثر هشت هفته تمرین‌های دایره‌ای بر بیان ژن AGRP لنفوسیت کشتی‌گیران تمرین‌کرده

Background and Objective: Agouti-related protein (AGRP) is an orexigenic peptide and found to be secreted from hypothalamic arcuate nucleus (ARC) and has important role in appetite and food intake. It has been shown that AGRP has an important role in weight control and plasma levels of this peptide increases in fatness and starvation. The aim of this study was to study the effect of 8-weeks cir...

متن کامل

Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation.

In human T-lymphoblastoid cells, downstream signaling events of mammalian target of rapamycin (mTOR), including the activity of p70(s6k) and phosphorylation of eukaryotic initiation factor 4E-binding protein 1, were dependent on amino acid concentration in the culture media, whereas other growth-related protein kinases were not. Amino acid-induced p70(s6k) activation was completely inhibited by...

متن کامل

Design of peptides interfering with iron-dependent regulator (IdeR) and evaluation of Mycobacterium tuberculosis growth inhibition

Objective(s): Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), stayed a global health thread with high mortality rate. Since TB has a long-term treatment, it leads high risk of drug resistant development, and there is an urgent to find new drugs. The aim of this study was designing new inhibitors for a new drug target, iron dependent regulator, IdeR. Materials and Method...

متن کامل

Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling.

Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression, male Sprague-Dawley rats (n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h interv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007